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We analyltically compute the asymptolic Fourier coefficients for
several classes of functions to answer two questions. The numerical
question is 10 explain the success of the Weideman-Cloot algorithr for
solving differential equations on an infinite interval. Their method com-
bines Fourier expansion with a change-of-coordinate using the hyper-
bolic sine function. The sinh-mapping transforms a simple function like
exp(~2’} into an entire function of infinite order. This raises the
second, analytical question: What is the Fourier rate of convergence for
ertire functions of an infinite order? The answer is: Sometimes even
slower than a geometric series. In this case, the Fourier series converge
only on the real axis even when the function uz(z) being expanded is
free of singularities except at infinity. Earlier analysis ignored stationary
point contributions to the asymptotic Fourier coefficients when ¢(z)
had singutarities off the real z-axis, but we show that sometimes these
stationary point terms are more important than residues at the poles
of u(zY. 1 1994 Academic Press, Inc.

1. INTRODUCTION

There are many ways to apply spectral methods to an
infinite interval [1-17]. Weideman and Cloot [6,7]
proposed a new two-part strategy. First, map the physical
coordinate z& [ —oc, w] to the new computational coor-
dinate { via

z = sinh(L{), (1.n
where L is a user-choosable constant, the “map parameter.”
Sccond, expand the solution as a Fourier scrics in ¢

r

() =ag+ 3 a,cos(nl)+ Y b, sinnl)  (1.2)

n=1 n=1

and compute the coefficients by the wusual Fourier

pseudospectral method [ 1, 67. ’

The Weideman-Cloot algorithm s both simple and
efficient. Unlike alternative infinite interval basis sets like
Hermite functions, Fourier series can be manipulated by the
fast Fourier transform. More important, Weideman and
Cloot show that their scheme is even more eflective than the
eaclier mapping-and-Fourier methods of Grosch and
Orszag [8] and Boyd [2, 4, 57].

To understand this success, we need to answer four
{apparent) criticisms of their algorithm. First, their map-
ping is a form of domain truncation; that is, the infinite
interval is approximated by the large but finite interval
ze[—D, D] where D=sinh(Ln). This implies 2 “domain
truncation error,”

Ep~OLju( £ D) ). {1.3)
This secms a drawback because this particular error is
absent from alternatives that compute on the whole infinite
interval such as Hermite functions. However, il u(z)
decreases exponentially with z, as true in most applications,
then E,, decreases exponentially fast with . Thus, domain
truncation is an effective strategy il I is sufficiently large.

The second criticism is that we need to choose the map
parameter L. However, as stressed in Boyd [2-4], all
infinite interval methods either explicitly or implicitly con-
tain a scaling parameter 'L whose choice is important for
efliciency.

The third objection to the Weideman—~Cigot algorithm is
that #(=[¢]) is not periodic in & If w(z[=z])#uw(z[{—=nT),
then the Fourier series will exhibit Gibbs® phenomenon with
a maxtmuom pointwise creor of about 9% of the jump,

Egimm =0089 {uz[n ) —u(z[ —n])},  (1.4)

independent of the truncation of the Fourier series.
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Boyd [57 pointed out, however, that
Egipes <0.18Ep; (1.5)

that is, the “Gibbs error” is always small in comparison to
the domain truncation error E,. Furthermore, maximum
error is always located within a small neighborhood of the
endpoints where the numerical solution is corrupted by the
truncation of the domain (Fig. 1). Thus, it is always safe to
combine a Fourier series with domain truncation, with or
without a mapping.

The fourth objection is far more subtle and serious than
the first three. Because it employs exponential functions, the
Weideman—Cloot map (1.1) makes the transformed func-
tions very strongly singular at { = o0 in comparison to the
mappings of Grosch and Orszag [7] and Boyd [2, 4, 5],
which use only algebraic functions of . This implies that for
the “steepest descent” or “stationary point” contributions to
the asymptotic spectral coefficients, the Weideman-Cloot
mapping is always inferior—in the asymptotic limit N = co,
where N is the truncation of the Fourier series—to the map-
pings of Grosch, Orszag, and Boyd. The goal of this work
is to resolve this paradox to explain why the Weideman-—
Cicot algorithm, although inferior in the limit, is so effective
for moderate N.

The resolution of the paradox is that the Weideman-—
Cloot method is superior for small N although inferior for
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FIG. 1. A schematic illustrating the convergence of the Fourier series

for a function which is exponentially small at the ends of the interval.
Upper panel: The sum of the first 100 sine terms for the non-periodic func-
tion u(z) = z sech(3z). Gibbs’ phenomenon in invisible on the scale of this
graph. Lower panel: Some as the top except for the restricted interval
ze [3n]). Note that the v-scale is more than 300 times smaller in the lower
figure. The relative error of the Fourier series (dashed) near z = is large
compared to f(z), but the absolute error is tiny because f(z) (sokd) is so
small near the endpoints.
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large N. The crucial point is that the “crossover point”
where the Weideman-Cloot algorithm loses its superiority
is very large N. For such huge truncation, the error of both
schemes is many orders of magnitude smaller than even
quadruple precision. For reasonable N, the Weideman-
Cloot mapping is better for entire functions.

For non-entire functions, that is, functions which have
singularities, a finite distance from the real axis, the
asymptotic error depends on additional terms besides the
stationary point conttibutions. Because of these “singularity
terms,” for non-entire functions, the Weideman-—Cloot
mapping is superior for all N.

The reason for its superiority is that infinite interval
methods must balance two conflicting needs. Large map
parameter L reduces the domain truncation error (good)
but spreads the points of the computationa! grid near the
origin, decreasing resolution (bad) as shown in Fig. 2. For
any mapping and any truncation N, the optimum map
parameter L is a compromise between the need to minimize
domain truncation error while simultaneously minimizing
resolution errors for small z.

The virtue of the Weideman-Cloot algorithm is that it is
very good at compromise. Because D ( =sinh(Ln)) grows
exponentially with L, only a slight increase in L will greatly
increase the domain size D. Recailing that E,, decreases
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FIG. 2. Schematic iltustrating the trade-offs in choosing a map
parameter L (or domain size D} to be large or small. The vertical line
segments mark the position of each grid point through their own position
on the z-axis; the length of each segment shows the domain truncation
error £, for each grid. Thus, the outermost segments, at z= + D, just
touch the graph of u(z). Top: Small L. The grid points are ¢lose, so resolu-
tion of the peak is very good, but the cost is that the domain error is large.
Bottom: Large L. The domain truncation error is much smaller because the
computational domain is much larger, but the resolution of interior
features is poor because the grid points are now much farther apart.
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exponentially fast with D, we see that E, decreases as an
exponential-of-an-exponential of L. Thus, it is always
sufficient to use L ~ O(1), which gives excelient resolution
for small z,

We show below that the Weideman-Cloot algorithm
achieves what we shall dub “quasi-geometric convergence™:
If E,(N) is the total error as a function of the Fourier
truncation », then

log(E7) ~ — pN/log(N) (1.6)
for some eonstant p.

To prove this and to show that (1.6) really is excellent in
comparison to its competitors, we shall use the two-part
methodology of Boyd [2-47. First, choose model functions,
either entire functions or functions with off-axis poles or
branch points, which are representative of broad classes of
functions. Second, apply the method of steepest descent and
the calculus of residues, as pioneered by Elliott [18-20]
and Miller [21], to analytically calculate the Fourier
coefficients of the models in the asymptotic limit 7 = cc.

In Section 2, we briefly review different rates of con-
vergence for spectral series. The following section describes
the mechanics of the method of steepest descent.

2. A REVIEW OF RATES-OF-CONVERGENCE THEORY
FOR FOURIER SERIES

Fourier convergence theory can be summed up in an echo
of a Biblical proverb: By their singularities shall we know
them. What this means is that asymptotically, as n = <0,
the coefficients of the Fourier series of a function are the
sum of contributions from each singularity of u(z) [1].
The singularities fail into four ciasses, each implying a
qualitatively different rate of convergence as illustrated
schematically in Fig. 3. The classes are the following:

(1) Poles, branch points, and discontinuities of u(z} or

a derivative on the real axis, If present, these singularities
imply au algebraic rate of convergence, such as a, = 1/n*
(Example: u = z"2))

(ii) Singularities which have an infinite number of
bounded derivatives for all real z, but nevertheless destroy
the analyticity of #(z) for some real z. Mathematically, u(z)
is C™ but not C*. These imply subgeometric convergence,
such as a, = exp(~n*?). (Example: u = exp(—1/z°).)

(ii)) Poles and branch points a finite distance s, from
the real axis. These imply geometric convergence, such as
a, =exp(—n/2). (Example: u=1/(2 +cos(z)).)

(iv) Singularities at z = oo. If these are the only poles
or branch points of u(z), then the function is “integral”
or “entire” and the rate of convergence is supergeometric,
such as a,=exp((1/2)[1 —nlog(n)]). (Example:
exp{ —cos(z)).)

=
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In summary, the complete asymptotic approximation to
the Fourier coefficients for n 3 1 is of the form

treal neow Fcomplex

a,~ Y wn U+y Bexp(—pni)+ Y, yexp(—-s;n)

i=1 j=1

+ E 3, exp(—t;n/log(n)),

j=t

(2.1)

where some of these sums may be absent.

The first summation is over those singularities of u(z) on
the real z-axis, including discontinuiti¢s induced by a lack of
periodicity. Such poles and branch points contribute terms
which are algebraic functions of », usually inverse powers of
n, perhaps modified by logarithmic factors, omitted for
visual simplicity, from (2.1). The power of n, ¢,, is controlled
by the type of singularity. Thus, a discontinuity gencrates a
term decreasing as O(1/n), a discontinuity in the first
derivative generates one proportional to O(1/n?), and z'/
creates a contribution which is O(n~%?). In the limit n = oo,
the sum over real axis singularities will dominate the other
sums and the series will have algebraic convergence.

The second sum is the effects of singularities of 4(z) which
are on the real axis, but are C*, that is, have bounded
derivatives of all orders. The function exp{ — 1/z%), for exam-
ple, has an essential singularity at the origin and thus is not
analytic at z=0. However, all its derivatives are bounded at
the origin (and, in fact, are all zero.) If such C* singularities
are present (but no singularities of the first class such that
rth derivative is unbounded for some finite r), then the
serics will have subgeometric convergence. Typically, the
dominant term is an exponential of # raised to a power
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FIG. 3. A schematic illustrating four different species of convergence
for spectral series, The logarithm of the total error is plotted versus the
Fourier truncation, N.
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smaller than one. Again, this exponential may be multiplied
by more slowly varying factors which have been omitted
from (3.1).

The third sum represents poles and branch points which
are located a finite distance from the real z-axis. The
exponential exp( — g,n) can be written as (exp{y,)) ~", so the
terms decrease like the terms of a geometric series, hence the
name “geometric convergence.” The constants i, are simply
the distance of the jth pole or branch point from the real
axis, that is, the absolute value of the imaginary part of
the location of the singularity. The smallest p; is u, the
“asymptotic rate of convergence” as defined in [1]. Tt is
obviously important whether p is very small or very large,
and the goal of the steepest descent analysis is to determine
u and related parameters.

A geometrically converging series converges throughout
the whoie strip in the complex z-plane such that |Im(z)| < s
To put it another way, the Fourier series converges within
the largest strip, parallel to the real axis, which has a pole or
branch point of 1(z) on one of the lines, Im{z) = + g, which
bounds the sirip.

The fourth sum is over terms which are associated with
singularities of #{z) at infinity. These terms are the contribu-
tions of so-called “stationary points” when the integrais that
define the Fourier coefficients are asymptotically evaluated
by the method of steepest descent, so we will call these
the “stationary point” terms. These dominate, giving
supergeometric convergence, only when w(z) is free of
singularities except at infinity. The form of the terms may be
different from that shown in (2.1}, but always it is an
exponential with an argument which increases faster-than-
linearly with #. As for the other sums, factors varying more
slowly than the exponentials have been omitted from (2.1),
as have factors which oscillate with n.

To understand the stationary point contributions, it is
sufficient to use “entire” or “integral” functions, that is,
those for which u(z) is free of poles or other singularities
except ai infinity. Entire functions can be classified by
“order,” where p is the smallest number for which

lu(z)! < [const] exp(M [z[*) (2.2)
for ali {z|. When 1 < p < w0, the steepest descent methods
shows that

a, ~ Oexp[ —m?r=17), (2.3)
However, a change of coordinates drastically alters the
situation.

For example, a Chebyshev polynomial series in x is really
a Fourier cosine series in the variable z where x = cos(z).
Making this substitution, the Chebyshev series for exp(x)
becomes the Fourier series for u(z) = exp(cos(z)). Although
exp{x) is an entire function of first order in x, exp(cos(z)) is
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an entire function of infinite order in z. The result is that the
a, decreasc as

a,~ Olexpl —nlog(n)1). (2.4)
The convergence is still supergeometric, but only by
virtue of a factor of log(r). In contrast, the Fourier series
for entire functions (in z) of finite order p replace log(n)
by #Y®=U Tt was observed at least 15 years ago [13]
that the Chebyshev coeflicients of an entire function of
order p (in the Chebyshev argument x) usually decrease as
O(exp[ —(n/p)log(n)).

Weideman and Cloot [6,7] neplected the stationary
point contributions in their asymptotic analysis for u(z)
which have singularities at finite complex z. Implicitly, they
assumed that the stationary point terms would be super-
geometrically converging, too. Although this assumption is
harmiess for all their examples, we shall show through a
countergxample that the stationary point contributions are
neither always negligible nor always supergeometrically
converging.

3. THE METHOD OF STEEPEST DESCENT

In cardier applications [2,3], we asymptotically
approximated the usual Fourier coefficient integrals. In this
work, we shall adopt a simpler approach of asymptotically
approximating the Fourier transform of u(z), thereby
avoiding endpoint effects:

x .
a,=— J_ u(z) e™ dz.
Tdm

3.1)

There are two ways to justify (3.1). One is to observe that
if u(z) is decaying exponentially fast on the real axis as
{z| = co, then we can extend the integration limits of the
usuai Fourier coefiicient integrals from +z to +co with
only an exponentially error. (This error in “integration-
limit-extension” is of the order of magnitude of the domain
error £, which must be smail if the Fourier series is to be
useful.)

The second justification is to define the function

oo

up(zy= Z

M= —ul

u(z—2nm) (“imbrication of f{z)").  (3.2)

This new function u(z), which is spatially periodic by con-
struction, is said to be the “imbrication” of the “paitern
function” u(z). “Imbrication” is a Latin word meaning “to
overlap like a pattern of tiles,” which is a good description
of how the multiple copies of u(z) sum to give a periodic
function. For a rapidly decaying u({z}, however, the overlap
is almost negligible except at the boundaries, where
up{ ) 2u( +n)=2E,. The Poisson sum theorem [237]
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implies that the Fourier coefficients of u,(z) are given by the
Fourier transform of the “pattern function,” that is, by (3.1).
Thus, we have two ways of interpreting (3.1): (i) as
the approximate Fourier coefficients of the non-periodic
function u(z) or (ii} as the exact Fourier coefficients of the
periodic function up(z).

The method of steepest descents is to deform the contour
of integration into the complex z-plane in such a’way that
it passes through one or more “stationary points™ where the
integrand rises steeply to a tall, narrow maximum. In the
vicinity of the stationary point, the integrand may be locally
approximated by a Gaussian function whose integral can be
evaluated in closed form. The integral is approximated by
the sum of the contributions from each stationary point. If
we define a “phase function” ¢(z; n) for u(z) via

B(z; Ry =In(u(2)) + inz <> u(z) e™ =57 (3.3)
then the stationary points are the roots of d¢/dz. The
integral is approximated by
2/ —ng"(z,;n),

a,~ exp[d(z,;n (34)

where the sum runs over all stationary points that lie on the
path of integration and where (")} denotes the second
z-derivative.

The imaginary part of ¢(z,; n) gives oscillations with »n
while the square root factor in (3.4) typically adds a multi-
plier of »~** or n"? to a,. The crucial part of the asymptotic
approximation, however, is the real part of ¢(z,; n) because
this controls the exponential rate of convergence with n.

The following theorem, which has not been emphasized
in the literature, 1s very useful in obtaining this ¢rucial fac-
tor. Note that for geometric convergence, a, ~ exp( -~ un),
log(a,) ~ —un~ Re(p(z,; n)). Thus, Re[dp/dn] = —pu, the
“asymptotic rate of [geometric] convergence” [17.

THEOREM 1. In the steepest descent approximation to an
arbitrary Fourier transform integral (3.1), the derivative
{with respect to n) of the phase function ¢{z (n); n) in (3.4) is
directly proportional to the corresponding stationary point,
z,(n),

dg(z,(n);n) .
— = iz (n). (3.5)
Thus,
R (M) = —3(z,(m). (36)
dn
Proof. The chain rule implies
Bznym _obdz, (3.7)

dn " 0z dn

BOYD

However, the condition that determines the stationary point
z,(n) is that it must be one of the roots of d¢/8z. Thus, the
first term in (3.7) must vanish everywhere along the curve
z,(n) in the complex z-plane, giving (3.5).

This theorem gives another way of distinguishing
between subgeometric, geometric, and supergeometric con-
vergence for the stationary point contributions. If Im(z,)
tends to a constant i as n=> o0, then the convergence is
geometric with asymptotic rate of convergence p. If the
stationary point moves closer to the real z-axis as »
increases, then the convergence is subgeometric (for the
contribution of that stationary point). Similarly, if Im{z,)
increases with n, be it ever so slowly, then the rate of
convergence is supergeometric.

The remaining mechanics of stecpest descent are best
described in terms of specific cases, to which we turn in
Section 5.

4. RESIDUES AND SINGULARITY CONTRIBUTIONS

When the contour of integration is deformed from the
real axis to the steepest descent path, the deformation will
usually, at least for sufficiently large », pass over the loca-
tion of one or more of the singularities of () in the com-
plex {-plane. If so, then the Fourier integral is no longer
given solely by the integration along the steepest descent
path, but equals the deformed integral plus additive con-
tributions from each of the included singularities. For poles,
these contributions are simply the residues at the poles.

For a simpie pole at { = {, the residue will be the product
of an n-independent factor with exp(in{,). Thus, p=Im({,)
is the asymptotic rate of (geometric) convergence. When
there are multiple singularities inside the deformed contour,
the one with the smallest g, that is, the pole or branch point
which is closest to the real {-axis, will dominate as n = 0.

Since the mapping z =sinh(L{} is an entire' function with
no singularities of its own, all the poles and branch points
in the {-plane are images of similar singularities of u(z) in
the z-plane. We can visualize the rate of convergence
associated with each singularity by plotting the contours of
#(Re(z), Im(z)), where

= (1/L) arc sinh{z). (4.1)
Figure 4 shows such a plot for L = 1; the contours for other
L are identical in shape, but the values attached to those
contours must be divided by L.

We may dub the contours of constant g “equicon-
vergence” contours since a pole or branch point anywhere
along the contour u =y, in the z-plane will contribute a
term to the asymptotic Fourier coefficients which decays as
exp(—npg). The bad news is that a singularity on the
imaginary axis above z =i wi]l always contribute a term
decaying as slowly as exp(—#nn/2), even if the singularity
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Equiconvergence contours: Im()=asinh{x+iy}

Ienagiz)

Re(z)

FIG. 4. Equiconvergence contours in z-plane, that is, plots of constant
values of g, the imaginary part of {, as a fusction of the real and imaginary
parts of . The p-values of the contours run in even steps of /20 from p =0
(real = axis) to u=n/2 (imaginary = axis above z ={). The heavy solid line
is the contour Im({)=r/4 in the z-plane. For a function with steepest
descent contributions decreasing as slowly as exp( —nw/4), all poles and
branch points above this contour in the z-plane are irrelevant to the
asymptotic Fourier coefficients.

is very, very far up the imaginary z-axis. Singularities
elsewhere contribute even slower rates of convergence.

The sype of singularity affects the contribution only
weakly; location is everything. (A proverb in real estate that
is equally true for Fourier convergence rates!) A second-
order pole multiplies exp(—#nu) by #; a logarithm divides
this by », and s0 on. The exponential part of the asymptotic
approximation is controlled entirely by the location of the
singuiarity in the {-plane.

5. NUMERICAL EXAMPLES

1. The Role of the Map Parameter L

If we define 2(n) to be the Fourier coefficients for L =1
{for any particular u(z)), then a simple rescaling of the
Fourier transform integral {2.1) shows that

a{L)=(1/L) a(n/L). (5.1)

Thus, it suffices to compute the coefficients for L =1, as we
shall do in the rest of this section, since we can obtain the
coefficients for general L by rescaling.

2. Gaussian Functions with and without Poles
Our first example comes in two flavors. The Gaussian

u(z) =exp(— 3z7) (5.2)
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is an entire function, By dividing this by a factor with
complex zeros such as

_exp(—(1/2))

uy(z) = Py (5.3)

which has simple poles at z= +ib, we can explore the
relative importance of the steepest descent contributions,
which are the only terms in the asymptotic approximation
to u,(z) versus the contributions of singularities for finite
complex z.

The transformed version of u,, which is illustrated in
Fig. 5, and its steepest descent phase function are

Cuy(2(C)) = exp{ —sinh*({)) = $(L; k) = —sinh*({) + int,

(5.4
where for simplicity L =1 as explained above,
The stationary points are the roots of
d¢ , :
EE= = —2 sinh({} cosh({) + ik. (5.5)

By separating {5.5) into real and imaginary paris and tri-
gonometric and hyperbolic identities, the stationary points
are, without approximation,

1
{,=+ ln(n+\/n_2——l]+i%+img

(n > 1; m=any integer).

[ ]]

(5.6)

exp(- sinh2() ) logyqlexp(- sinh2(Q) )|
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FIG. 5. Two views of the function u{{) = exp( —sinh?{{}). Only the
half-interval { e [0, #] is shown because the function is symmetric with

respect to { =0. The left panel uses a linear scale for #,{{) while the right
graph shows the log,q(u,({)).
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The restriction to #> [ is not serious since the steepest
descent approximation is accurate only for n3» 1. For
negative n, the stationary points are the complex conjugate
of those in (5.6).

The steepest descent path is shown in Fig. 6, but this does
not actually enter the final answer; indeed, we did not com-
pute the deformed integration contour until more than a
year after completing a first draft of this paper! An infinite
number of stationary points, i.e., » = 0 and all positive even
values of m, lie on the deformed contour of integration,
which stretches to infinity along the positive imaginary
t-axis. However, the contributions from the points closest
the real axis (m = 0) dominate. The contributions of higher
m are smaller by Ofexp[ —mnn/27). Discarding all but
the leading terms and simplifying via trigonometric and
hyperbolic identities, we obtain

efm./n*—1e "
xcos{gln[n+,/n2—l]_%1/n2—l—g}. (57)

The “envelope™ of the asymptotic approximation may be
defined as (5.7) with the cosine factor omitted, i.e.,

efn /n*—1e ™

a,~2

e, ~2 {5.8)
We see that, ignoring the oscillatory factor and the 1/\/;,
the Fourier coelficients are decreasing like the terms of a
geometric series. That is,

a,} < 1.86 (Ell—g)zz e/ (e~ Y. (5.9)
6
54.
41L |
3l
2
Y
-3 2 -l 0 J 2 3
Re(zeta)

FIG. 6. The steepest descent path in the complex {-plane for u,(z[{]).
The arrows show the direcion of integration. The disks mark the stationary
points; the dominant stationary points are marked by the crosses inside the
disk. The figure illustrates the path for » = 10; for other », the imaginary
part of the location of each stationary point is unchanged, but the real parts
slowly move away from the imaginary axis as Re({ .}~ + {035 + In(n'?)}.

JOHN P. BOYD

Figure 7 and Table [ compare the exact Fourier coef-
ficients with the asymptotic approximation. We see that
even for small », the asymptotic approximation is quite
good.

Multiplying the Gaussian by 1/(b*>+z?) to obtain a
singuiar function modifies the asymptotic Fourier coef-
ficients in two ways. First, the stationary point contribu-
tions are multiplied by the value of this factor at the station-
ary points, ie., 1/(b* +sinh?({.})). Because this multiplier
varies slowly with { in comparison with the Gaussian, the
algebraic factor does not, except at higher order, aiter the
location of the stationary points, which are still given by
{5.6). For large n,

1 2i
b +sinh*(() n’ (5.10)
so the stationary terms are modified only by multiplication
by this algebraic (rather than exponential) function of n.
Second, the asymptotic Fourier coefficients also include
terms generated by the poles. When the path of integration
is deformed from the real axis to the contour illustrated in
Fig. 6, the path, at least for sufficiently large positive », will
be moved across the pole where sinh?({ ») =ib. The Fourier
integral is then given by the steepest descent term plus the
residue at the pole which lies between the old and the new
paths. (For negative #, the steepest descent path and the
enclosed pole are in the lower {-plane, the reflections with
respect to the real {-axis, of the path and pole for n > 0.)

ul(zeta)=exp(—sinh{zeta)+2)

0 — T — v T —— T

o+
2} 3
Lo}
o]

g 4
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a@F 4
9}

)
.
-lO[‘
e

n

FIG. 7. Solid: logarithm, base 10, of the exact Fourier cosine coef-
ficients for u({)=exp{—sinh®({)). Dashed; the full asymptotic
approximation to the Fourier coefficients, given by (4.7). Doited: the
envelope of the asymptotic Fourier coefficients (4.8).
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TABLE [

Fourier Coefficients, Asymptotic Approximations to the
Fourier Coefficients, and the Error in the Asymptotic Approxima-
tion for u ({}=exp{ —sinh*{{))

n da, Asymptotic Absolute error
1 0.4155 t —-0.585
2 0.2537 02776 -0.0239
3 0.09661 0.09466 0.00196
4 8.660¢-3 6.743¢-3 1.92e-3
5 —0.012832 —1.323e-2 3.98e-4
6 ~—5963e-3 —5.863¢-3 —101e-4
7 6.641e-4 7.353¢-4 —7.12e-5
8 1.233¢-3 1.232¢-3 4.18e-7
9 7.28%e-5 6.277¢-5 101e-5
10 —2.226e-4 —2.235e-4 9.09¢-7
N —2.791e-5 —2.643¢-5 —1.48e-6
12 4.163e-5 4.181e-5 —1.73e-7
13 4.674e-6 4.433e-6 24le-7
14 —8.230e-6 —8.246e-6 1.68e-8
15 —-2.136e-7 —1.722e-7 —4.14e-8
16 1.617e-6 1.616¢-6 1.57e-9
17 —1.886e-7 —1.954¢-7 6.86e-9
18 —2.832e-7 —2.819e-7 —1.36e-9
19 9.175e-8 9.269¢-8 —9.46e-10
20 3.554¢-8 3.510e-8 4.35e-10
21 —2.653e-8 —2.659%-8 6.87¢-11
22 —7.936e-11 1.543e-11 —9.48e-11
23 5.251e-9 5.238e-9 1.31e-11
24 —1.557-9 —1.570e-9 1.34e-11
25 —5.445¢-10 —5.380e-10 —6.45¢-12
26 4.906e-10 4.909¢-10 —3.72-13
27 —6.415%-11 —6.546e-11 1.31e-12
28 —7.393e-11 —7.354e-11 —394e¢-13
29 4.097e-11 4.106e-11 —9.72-14
30 —1.4953e-12 —1.603e-12 1.10e-13

The residue is the product of an #-independent factor with
exp(in{,), where {(n>0) and {, is the pole in the upper
haif-plane. It follows that Im({,) is the asymptotic rate of
convergence, as defined earlier. Tt is easy to show that

arc sin(b),

3, = {n/z

Since the steepest terms are decreasing as exp{ —nn/4), it
follows that for b<0.707, the residues dominate the
asymptotic Fourier coefficients for sufficiently large n. For
b>2'272, ie., when the poles are sufficiently far from the
real axis, the rate of convergence is controlled by the
steepest descent terms, and by them only, even though u,(z)
has poles in the finite {-plane. Figure 8 shows that for b= 1,
for example, the estimate a, ~ O(exp[ —nn/2]), based only
on the poles of u,(z), is a wild overestimate of the actual
convergence raie.

We can extend this argument to complex 4 both graphi-
cally and analytically. The graphical approach is illustrated

bl

b>1. (11)

S81/110/2-12
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u2(zeta)=expl{—sinh(zeta}2/(b*b+sinh(zeta)»2)
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FIG, 8. Solid: log{la,}) of the Fourier coefficients of u,(z{{]), the
Gaussian-with-poles for #=1. Dashed curve: Incorrect asymptolic
approximation based on the residues-at-poles only, «,~ [constant]
exp{ —nn/2). Dotied: Coreect asymptotic approximation based on the
stationary point contributions only: a,, ~ 3.72n 2 exp(—nn/4).

in Fig.4. The contours are lines of equal rates of con-
vergence, that is, a pole on any particular contour iing will
produce the same asymptotic rate of convergence (for the
contribution of that pole to the asymptotic Fourier coef-
ficients) as a pole anywhere else on that contour, The heavy
line is the contour p=n/4, that is, the contour for which
the asymptotic rate of convergence is equal to that of the
stationary point terms for i, If the pole of u, (z{{ 1) {in the
z-plane} lies above that contour, then the stationary point
contribution will be exponentially large in comparison to
the residue-at-the-pole term.

It follows that the conventional wisdom { 1] that the rate
of convergence is controlled by singularities of u(z) at finite
z if any are present, is not always true. There is a precedent:
Hille [24, 3, 1] more than 50 years ago showed that a
Hermite series would, under some circumstances, converge
more slowly than predicted from its singularities.

Weideman and Cloot assumed that the conventional
wisdom was true, as it is for their examples, and thus
ignored the stationary point terms. However, this is not
legitimate for alf classes of functions. Fortunately, since
both the stationary point contributions and the residues-at-
the-poles give geometric convergence, their gualitative con-
clusion is correct, in general: When L is allowed to grow
logarithmically with & so that the series truncation E| is-
roughly the same magnitude as the domain error, the total
error decreases as O{gN/log(N)). The possibility that the
stationary point terms may be more important than the
singularities is significant only in estimating the constant q.
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One can also explore the consequences of (5.11}), i.e., that
the asymptotic rate of convergence u=arcsin(b), by
analytically exploring various limits. For example, if u(z)
has a singularity at z =5+ iz, where s => o0 for fixed z,,,
then the asymptotic rate of convergence p % z,, /s. However,
the contribution from such a pole close to the real z-axis but
far from the imaginary axis will be weighted by an exponen-
tially small residue, assuming u(z) decays exponentiaily on
the line Im(z)=z,, as it does along the real axis. Simple
experiments not shown here suggest that such singularities
have little effect on the Fourier coefficients a,, for reasonable
n for most functions.

3. A GENERAL MODEL

The steepest descent formalism can be applied with great
generality, To illustrate this, consider

wiO)=exp (| BOIxpOT9 ), (522

where B(() is arbitrary except that it varies more slowly
than the exponential it multiplies and where r and 4 are
constants. For simplicity, assume that & is real. All the
more specific models we have discussed and will discuss are
special cases of this family of functions,
The stationary point condition for the asymptotic
approximation of the Fourier integral of (5.12} is
B(L,)exp(ri?)=1in. (5.13)
In the limit |z,| => c0 as n=> o0, this simplifies, as can be
shown by taking the logarithm of (5.13), to approximately

r{?xlogin) (5.14)
or, equivalently,
log(n)}'

When r is complex so that the function u;({) is a decaying
oscillation as opposed to a monotonically decaying function,
then (5.15) shows that the imaginary part of the stationary
point 1s increasing logarithmically with #. This in turn
implies supergeometric convergence for the stationary point
contributions. If the function also has singularities in the
finite {-plane, then the singular terms will atways dominate
the asymptotic Fourier coefficients.

If, however, r 15 real so that u,({} is decaying monotoni-
cally, at least for sufficiently large |{), then (5.15) gives only
the real part of the stationary part, but says nothing about
its all-important imaginary part. To obtain this, it suffices to
apply Newton’s iteration to (5.13), just once using (5.15) as
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the first guess. Discarding a small term, the logarithmic
derivative of o, we obtain

S(C)=—"2 23[log(B{ NI

- 2gpt2d—Did log(dn- l)fd(n)’

(5.16)

where the argument of  is evaluated at the first approxima-
tion to the stationary point given by (5.15).

Qur first example, u,(z[{7), corresponds to the special
case d=1, r=2 and Im(log($))=0, ie, Im({{,)=nr/4. All
functions of the form exp(—z”) are mapped by the sinh
transformation into uy with d=1, r= p. For this special
case, the imaginary part of the stationary point is indepen-
dent of n, implying geometric convergence. However, the
rate of geometric convergence is controlied by the exponent
p, le, p=r/(2p). Thus, a Gaussian has only half the
asymptotic rate of convergence of an exponential whose
argument is linear in z,

Our fourth example,

u4(2) =sech™(iz) <= u,(sinh{{}) = sech™(A sinh({))
(5.17)

is also a special case of us(z), one which asymptotes to a
constant times exp{ —m |z|). Equation (5.16) predicts that
the steepest descent terms will decrease proportional to
exp{ —nn/2).

The mth power of the hyperbolic secant also has
{m + L)th-order poles at z= +ir/(24). For large A, that is,
very narrow peaks, the coefficients are asymptotically
dominated by the contributions from the poles and decay as
exp(—an/(24)). When A< n/2, however, the singularities
are sufficiently far up on the imaginary z-axis to lie on the
u=mn/2 contour in Fig. 4. The stationary point and residue
terms are then proportional to the same exponential.
However, the exponential for an (#+ t)th-order pole is
muitiplied by #»™, so the pole terms will dommnate the
Fourier coefficients by a factor of a power of # for suf-
ficiently large m, that is, when the hyperbolic secant func-
tion in (z) is raised to a sufficiently high power. {We have
not attempted to determine the precise value of m for which
this occurs since this would require carefully determining
the algebraic factor of » which multiplies the exponential
in the steepest descent term, as we did for our first two
examples.)

4. THE GAUSSIAN-OF-A-GAUSSIAN

For the three previous specific examples, u,, u,, and u,,
the stationary point contributions decreased geometrically.
One is tempted to conjecture that the stationary point terms
always decrease geometrically, but this conjecture is false.

The sinh mapping always generates transformed func-
tions in which the inner exponential is a linear function of {
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since sinh({) asymptotes to § sgn({) exp(|{|). This suggests
that geometric or supergeometric convergence is the
norm for functions obtained through the Weideman-—Cloot
mapping.

However, if we cut loose from the sinh mapping and
consider more general entire functions, then it is easy to
show that the rate of convergence need not be geometric.
For example, the “Gaussian-of-a-Gaussian” function is

us(0) = exp(— L exp({?)) (5.18)
as ilustrated in Fig. 9. This is a special case of u;({) with
d=2. Eq. (5.16) shows that

N S __m
)~ )’(ﬂ)i’«xp( - m)

1=, (5.19})

where y(n) denotes a factor that varies more slowly with »
than the leading exponential. Thus, the convergence is nor
geometric, However, it fails to be geometric only because of
the logarithmic factor.

Figure 10 shows that the magnitudes of the Fourier coef-
ficients are—at least until the @, are below the roundoff
threshold of our 14 decimal point computations—
indistinguishable from the straight line pattern which is the
signature of geometric convergence on a log-linear plot. It
is for this reason that we dubbed convergence like (5.19)—

Gaussian—of-Gaussian

LA S | T

T T T T T

log 10{us)

ﬂ Q 4l

=
=ttt

-200 14

-300 ¢

zera/pi zeta/pl

FIG. 9. Two views ol the function us{f)=exp{{? expiZ?)). Only the
hall-interval {e [0, n] is shown because the function is symmetric with
respect to { =0. The left panel uses a linear scale while the right graph
shows the log o(us({)).
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FIG. 10. Solid: log|a,!} for the Fourier coellicients of us({), i.e, the
imbricate serics whose pattern function is the Gaussian-of-a-Gaussian,
Dashed: log,g(exp(—nn/8)). (The factor of n/8 was chosen via empirical
curve-fitting.) Dotted: same as the others but for exp(—nn/{4[log(n}]'"),
the dominant factor in the asymptotic approximation.

geometric, except for a logarithmic factor inside the
cxponential—as “quasi-geometric.” The dashed line in
Fig. 10 is actually a much better empirical curve fit than
{5.19) (with y taken as one for purposes of the graph).

The reason for this surprise is that {5.19) is only an
approximation. As shown in Table 11, (5.19) is the first term
in a power series in v= {log(n)} ", which increases very,
very slowly with n. For s <60, as shown in Fig. 11, the
relative error in the location of the stationary points is never
better than 10 %. The error is negligibly small only when »
is literally astronomical! Nevertheless, (5,19) is the correct
lowest order asymptotic approximation.

TABLE II

Solutions of the Stationary Point Equation for the Imbrication
of the Function u,({} = exp( —¢? exp({*))

v n £, Relative errors
2 54.6 1.401 + i0.353 0.107043 —0.1128
3 8103.1 2.369 + i0.267 0.0218 0.0210
4 8.886e + 6 3.404 4 40.206 ~0.00530 0.0448
5 7.200e + 10 4.450 +i0.164 0.00140 0.0447
6 4.3ile+ 15 5494 4 i0.136 0.000314 0.0399
7 1.907¢ + 21 6.5324+i0.116 —0.000149 0.0346
3 6.235e +27 7.565 +i0.101 —0.000110 0.029%
9 1.506e + 35 8.594 4 i0.0896 —0.000129 0.0259

10 2688 + 43 9.618 + i0.0804 —0.000122 0.0227

Note. The errors were computed separately for the real and

imaginary parts and v= {log(n)}"~.
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6. THE DOMAIN OF CONVERGENCE OF THE FOURIER
SERIES OF AN ENTIRE FUNCTION

As noted earlier, the Fourier and Chebyshev series of
entire functions often converge supergeometrically. This
rate of convergence on the real axis implies convergence
through the entire finite {-plane. It has been assumed that
this was always true for entire functions: supergeometric
rate and an unbounded domain of convergence.

We have shown through steepest descents that this is not
always true, The sinh mapping routinely generates functions
whose stationary poeint terms are decreasing only geometri-
cally. For the Gaussian, u,(z[{])=exp{—sinh?({)); this
implies that the series converges only within the domain
[Im({)| < n/4 even though the function has no singularities
except at infinity.

The Gaussian-of-a-Gaussian is even more extreme. The
rate of convergence is subgeometric. This implics that the
domain of convergence is the real axis only. This is as far as
possible from the entire {-plane!

7. DOMAIN TRUNCATION ERROR AND
VYARIABLE MAP PARAMETER L

In the analysis above, we have fixed L and computed
asymptotic approximations as #=-c0. These approxima-
tions can be interpreted in two ways: First, as approxima-
tions to the Fourier integral of a model function, and
second, as approximations to the Fourier coefficients of the
periodic functions formed by imbricating the model func-
tions, as explained in Section 3. It is xot correct to interpret
these approximations as the total error in approximating
a function on an infinife interval because the error in
truncating the Fourler series after the Nth term must be
augmented by the domain truncation error Ej, which is
O(Ju({= £x)|).

In the limit N = o for fixed [, the total error E for the
infinite interval problem tends not to zero but to E,. To
obtain convergence to zero, we must increase [. with N so
that the errors from truncating both the series and domain
decrease simultaneously,

The optimum choice of L is to balance the two errors so
that they are roughly the same order of magnitude as
explained in [2]. For geometrically converging series, it is
a good approximation to take the last retained coefficient
a, as the series truncation error £ [1,2]. Then the
optimum L is obtained by solving

exp (—%)n-u(zzsinh(br)), (7.1)

where the L-dependence follows from (5.1).
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For example, for our first model funétion-, the Gaussian,
and for the Gaussian-with-pole when 4 3 1, the iogarithm of
both sides of (7.1) gives

Nn

Y2 exp(2nL)}

(7.2)
which implies that

Lz;;;log(Nﬂ)+0(108(10g(N))= N1 (73)

It follows that if we apply the Weideman—Cloot mapping to
u;(z) =exp{—z?), the best we can obtain is a total error
decaying roughly as

ES(N)+ Ep(L{N)}~ O  ex il ) (7.4)
s > P\ ™ 2logvmy)) "

The estimate is the same for the Gaussian-with-pole, aslong
as h>1. Weideman and Cloot [6] derived a similar
estimate,

The presence or absence of the poles is much more signifi-
cant for rival strategies for infinite interval problems. Boyd
[2] shows that with his optimal algebraic mapping, one can
obtain a total error for the Gaussian, u(z)=exp(—z?),
which decreases geometrically with N:

EN)~ Olexp(—-0438N)). (7.5)
Because of the logarithmic factor in (7.4}, the convergence
for the Weideman—Cloot mapping is geometric, and there-
fore must be asymptotically inferior to Boyd's algebraic
mapping.

However, the series coefficients for exp(—sinh?(L{))
decrease as fast as O{exp[ — Nr/(4L)]); for L < 1.411, thisis
Jaster than (7.5). It follows that for moderate L and N, the
Weideman—Cloot mapping is better. Boyd [1, 257 shows it
is very common that a method which is superior to another
method in the asymptotic limit is inferior for moderate N.
The “crossover” point is at L = 1.411, where the rate of con-
vergence of the series coefficients for the Weideman—Cloot
treatment of the Gaussian matches (7.5). For this L,
however, the domain truncation error is

Ep=exp(—sinh?[1.411n]) =exp{ —1770.5). (7.6)
In other words, we need to use a map parameter for the
Weideman—Cloot scheme as large as 1.411 only when we
need about 770 decimal places of accuracy and can afford to
take N large enough to reduce the series truncation error to
this same magnitude—a bit over 4000. For smaller Z and N,
the Weideman—Cloot mapping is superior to Boyd’s map;
for N > 4000, his mapping is better.

It is clear that for all practical applications, the
Weideman--Cloot strategy is better than an algebraic map-
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ping at least for entire functions of order two like exp(—z?).
Weideman and Cloot [6] describe several other numerical
experiments which show that their change-of-coordinate
is very effective for representing many other kinds of
exponentially decaying functions on the infinite interval.

~ The basic reason for the practical effectiveness of their
algorithm is that it is never necessary to vary their map
parameter L e¢xcept within a very narrow range. Figure 5
shows, for example, that I =1 implics a domain error of
O(107%*). One rarely needs more accuracy than this, so
L =1 is a practical upper bound on the map parameter.
However, choosing L =4 gives a boundary error as large as
0.005. Thus, for our first model function, one would aiways
choose L in range [1, 1]. Using an arbitrary value in so
narrow g range instead of the optimum L(N) will not
drastically increase the number of Fourier terms N that
must be retained to reach a given error tolerance,

In contrast, as shown by Boyd [2-4, 26], the optimum
map parameter for algebraic mappings varies widely with N
and also with the location of the poles and branch points of
u(z), to the extent that one knows them.

For non-entire functions, Boyd [1, 2, 4, 26] shows that
poles or branch points significantly reduce the convergence
rate of methods that use algebraic mappings, reducing the
logarithm of the optimal error to N', where r < 1, typically
3 or . Thus, for functions singular off the real axis, the
Weideman—Cloot mapping is superior in the asymptotic
limit N — oo as they themselves note.

For best results, it may be helpful to make the simple
linear stretching

z=My

before applying the sinh mapping z = sinh(L{). For «(y) =
sech™(1y), for example, the Weideman-Cloot mapping is
most efficient when 4~ O(1). We can guarantee this by
applying (7.7) first with M ~ Q(1/1).

The Fourier coefficients decrease more slowly as L
increases, s0 it is desirable to use the smallest L which gives
an acceptable domain error. If the goal is 4 digits of
accuracy, then one may optimize L by choosing it so that

(7.7)

Ep(Lop) =ufsinh[L ]y =107 (7.8)
For u(z) = sech™(4z), for example, this gives
i . d log{10)
L z; arc sinh (T) (7.9

By replacing u(z) by its asymptotic form as |z| = 20 and
then taking the logarithm of both sides of (7.8), onc may
derive similar estimates for quite general u(z).

8, SUMMARY AND OPEN QUESTIONS

We show through steepest descent analysis that unlike
the series for entire functions of finite order, the Fourier
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expansions for entire functions of infinite order may have
only geometric or subgeometric convergence. This implies
that instead of converging throughout the entire complex
{-plane (excluding infinity), as true of the series for func-
tions of finite order, the Fourier series for entire functions of
infinite order may diverge outside of a strip centered on the
real {-axis, or perhaps everywhere off the real axis. Because
Chebyshev series are the image of a Fourier cosine series
under the nonsingular mapping z=arc cos(s), it follows
that these statements apply to Chebyshev polynomial series
as well,

To put it another way, Boyd’s assertion is false [17: That
a Fourier series will converge within the largest strip in
the complex plane where u({} is frec of singularities. The
Fourier series of our Gaussian-of-a-Gaussian function
converges only on the real axis even though it is free of
poles and branch points everywhere except at infinity.

Through this steepest descent analysis, we have also been
able to shed some light on the effectiveness of the hyperbolic
sine mapping introduced by Weideman and Cloot for
mapping a decaying function on an infinite interval into a
function that can be accurately approximated by a Fourier
series. We find that with or without the presence of
singularities in u(z), we can obtain “quasi-geometric”
convergence in the sense that the error, with optimal choice
of map parameter L, has a logarithm proportional to
Nlog(N), where cos(N{ ) is the highest Fourier term kept in
the truncation.

We have also learned that in comparing methods, such as
the Weideman—Cloot mapping with alternative mappings
proposed by Boyd [2-4] and Grosch and Orszag [8], one
must be very careful to do more than merely inspect the
asymptotic limit of infinite N. For finite N—even for very
large N—the asymptotically superior strategy may in fact be
markedly inferior for all practical parameter ranges. This
caution about a “crossover N,” where competing methods
exchange superiority is especially relevant when log(N)
factors appear in the asymptotic error estimates.

We conclude after this more careful analysis that the sinh
mapping is always superior to algebraic mappings for
functions with singularities in the finite z-plane, and it is
also superior for entire functions for all reasonable values
of error tolerance and Fourier truncation N.

Parentheticaily, note that some other interesting applica-
tions of the sinh mapping (without domain truncation but
with Whittaker cardinal functions) are given in [17,
pp. 87-89; 271

A number of intriguing open questions remain. First, is it
true that the Fourier series of all periedic functions which
are the exponentials of entire functions of first order con-
verge geometrically? Second, do series of periodic entire
functions which are exponentials of entire functions of
higher than first order converge quasi-geometrically? Third,
is it possible to systematically classify entire functions of
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infinite order so as to replace vague phrases like “exponen-
tiais of entire functions of first order” by more precise
categories?

Lastly, note that we have not offered any rigorous proofs
for our assertions. The close agreement between the actual
Fourier coefficients and the asymptotic approximation to
them, as documented in Tabie 1, is certainly encouraging,
However, numerical agreement falls short of a proof. Our
analysis suggests a whole slew of conjectured theorems.
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